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Abstract

The technique of ridge regression,first proposed by Hoerl and

Kennard (1970), has become a popular tool for data analysts faced with

a hi gh degree of mu ltico llinearity in their data . By using a ridge

estimator , it was hoped that one could both stabilize his estima tes

(lower the condition number of the design matrix) and improve upon the

squared error loss of the least squares estimator.

Recently, much attention has been focusea on the latter objective .

Building on the work of Stein (1955) and others , Strawderman (1976) and

Thisted (1976) have developed classes of ridge regression estimators

which dominate the usual estimator in risk , and hence are m nimax. The

unwieldy form of the risk function , however , has lead these authors

to rninimax conditions which are stronger than needed.

In this paper, using an entirely new method of proof , we derive

conditions that are necessary and sufficient for minimaxity of a large

class of ridge regression estimators . The conditions derived here are

very similar to those derived for minimaxity of some Stein-type estimators .

We also show, however, that if one forces a ridge regression estimator

to satisfy the minimax conditions , it is quite likely that the other goal

of Hoerl and Kennard (stability of the estimates) cannot be realized.
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1. Introduction

Beginning with the work of Stein (1955), which showed that in hi gher

dimensional problems , the sample mean of a multivariate norma l distri bution

is inadmissibl e against squared error loss , much research has been aimed

at developing estimators whose risk functions dominate that of the sample

mean. More recently, a new estimation procedure , ridge regression , has

been developed to imp rove upon the numerical stability of the least

squares estimator in linear regression. Although the original purpose

of the ridge regression estimator was not to dominate the risk of the

least squares estimator , recent research has gone in that direction.

In the present paper we develop a class of ridge regression estimators

and , utilizing a new method of proof , derive necessary and sufficient

conditions for these estimators to be minimax , and thus dominate the

least squares estimator in risk. We also point out that “forcing ” ridge

regression estimators to be minimax makes it nearly impossible for them

to provide the numerical stability for which they were originally

intended.

We start with the familiar linear model

v = z~ + ~~, (1.1)

where Y is an nxl vector of observations , Z is the known nxp design matrix

of rank p. ~ is the pxl vector of unknown regression coefficients , and ~ is

nxl vector of experimental errors. We assume that c has a multivariate

normal distribution with mean vector zero and covariance matrix 021n • (1~

denotes the nxn identity matrix.)
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A second deficiency in ~ was first noted by Hoerl and Kennard

(1970). If the matrix Z arises from observation rather than from a

desi gned experiment , it is possible that there will be high correlati on

among the Z variables. This will lead to a Z’Z matrix that is “nearly

singular ” , i.e. Z’Z will have a wide eigenva l ue spectrum. If this is the

case , Hoerl and Kennard point out that the least squares estimator ~ will

be “unstable ” in the sense that a nearly singular Z’Z will produce an

inverse with inflated diagonal values , and (see (1.2)) small changes in

the observations might produce large changes in ~~~. To correct this

problem , they proposed the ridge estimator

~(k) = (Z’Z + kI~ Y
1 Z’Y (1.7)

where k is a positive number. Adding the number k before inverting amounts

to increasing each eigenvalue of Z’Z by k. This can be made clear as

follows : Let P be the matrix of orthonormal eigenvectors of Z’Z , and

let A l ~~~ A
2 

... be its ei genvalues. It follows that

= 0
A ’ 

p’p = 
~~~~~, (1.8)

where = diag(A 1,...,A~). Then (1.7) can be written as

= (P’(DA + kI~)P)~~Z’Y. (1.9)

To see how the ridge estimator is more stable than t~~, we note that the

condition number of the matrix being inverted in (1.9) is decreased. The

condition number of a matrix is a measure of its ill-conditioning , gi ven by

_ _ _
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The usual estimator of ~ in (1.1) is the least squares estimato r

= (Z’Z)~~z’v. (1.2)

minimizes the residual sum of squares of the regression , i. e.,

mm (Y-ZB)’(Y-Z~) 
= (Y-Z~)’(Y-Z~), (1.3)

and thus is the estimate which best “fits ” the data . Two different

lin es of research , however , pointed out deficiencies in ~~~.

The first deficienc y in ~ is its inadmissibility . If we measure

the loss of an estimator ~ of ~ by

= 1~ (6-~ )’Q (ó-~ ) (1.4)

where Q is an arbitra ry positive definite matrix , and let the risk of

~ be given by

R(~ ,
~~ ,.~2) = E L( ~~, ~~

, ~
) ,  (1.5)

then the results of Brown (1966) show that n i s  i n a d m i s s i b l e .  Severa l

authors (e.g. Bhattachary a (1966), Berger (l976b)) have exhibited large

classes of estimators whose risk function dominates that of ~~~. Since

is a minimax estimator of ~ with constant risk

R(~~~ ,-~
2
) = tr Q (Z’ZY

1
, (1.6)

this search for estimators better than h is a search for minimax estimators .
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= , (1.10)

where Amax( .) and Amin( .) denote the largest and smallest roots of

a ma tr i x . Large values of ~-(A) mean tha t A is ill conditioned . Since

\
1 + k  

~l
~, + k < 3 (1.11)
p p

for k - 0, the ridge estimator is reli eving the ill-conditioning problem

of Z’Z. A straightforwa rd generalization of (1.9) is the generalized

ridge estimato r

~~( K )  (P’(D + K)PY ’Z’Y (1 .12)

where K = diag(k 13 .. ., k~). Here , we allow each eigenv alue of Z’7 to

be increased by a different amount.

Hoerl and Kennard list many properties of the ridge estima tor , and

prove the “R i dge Existence Theorem ” . This theorem asserts that for a fixed

parame ter point 
~~

, there exists a value of k (or value s of ~~ inl~ 2 ,. ,p)

depending on - ,

~~

, for which the risk of ~(k) is smaller than the risk of

~~~. This theorem , together with results arising from the work of Stein ,

has lead to the search for minimax ridge estimators .

In Section 2, we dis cuss the canonical form of the problem , and

deve l op the necessary notation. Section 3 contains the asymptotic (as the

parameter value increases) results needed as a preliminary step in

developing the main theorem . Section 4 contains the main theorem , the
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sufficient conditions for mini maxity of the estimators , while in Section

5 we s how tha t for a smaller c lass of est im ators these con diti ons a re

necessa ry and sufficient. Section 6 contains a discussion about the

relati onship between minima xity and the condi tioning problem.
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2.  Th~ Canonical Problem

The technique of simu l taneous diagona lizat ion has found frequent

use in proving minimaxity of classes of estimators (see , for exa m ple ,

Berger (1976b) or Strawderman (1976)). The problem is rota ted into

a space where both the covariance matrix and the loss matrix are

diagonal , which greatly simplifies calculations while preserving m inima ii ty .

However , with estimators of the form (1.12) it is necessary to

simultaneously diagona lize three matrices (Z’Z ,P’VP ,Q) which , in

gene ral , is not possible. A sufficient condition for the simu l taneous

dia gonalization of these three matrices is that Q and Z’Z have common

ei çjenvectors . In the absence of any prior knowledge , an experimenter

w ill usually choose Q I or Q = (Z’ZY1 and the simultaneous diagona li zat ion

can be carried out. However , it is often the case that an experimentor

has some knowledge of the losses he is willing to incur in the individua l

components , possibly from cost considerations or prior knowledge.

For this purpose , it is worthwhile for the estimator to perform well

against an arbitrary choice of Q.

Since Hoerl and Kennard ’ s estimator was proposed onl y with the

choice Q = I in mind , we cannot expect it to perfor~ well when Q is

arbitrary . A slight generalization , h Dwever , will handle any choice of

Q. As an extention of (1.12) we define

~Q(K) 
= (77 + ~1’KM )~~Z’Y , (2.1)

where M is a non-singular matrix which simu l taneously dia gona lizes

Z’Z and Q. If Q and 7,7 have common eigenvectors , (2.1) is the ori ginal

ridge estimator. If 0 is the diagonal matrix of eigenv alues of

(Q (Z’Z)Q~)~~ , M satisf ies
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M’D~~M = Z’Z
(2.2)

M’M =

and showing that ~Q(K) is minima x against the loss

L(B ,~ .o 2) = 
~-~-(B-~)’Q(B-B) (2.3)

can be reduced as follows . ~Q(K) can be written

e (K) =

(2.4)

= M ( D +K) D~~M~.

Le t X = M~, ~ = M~. Since ~ ~ N(~ ,02(Z’Z)~~), it follows tha t

X ~ N(~ ,u 2D). Also , from (2.2),

L(B,~ ,o2) = L,- (MB-M~,)’(MB-M~)

= ]__~ _ (MB-o)’(MB- )

If we let 6
Q(K) 

= M~Q(K). we have

6Q(K) 
= (D +K)~~D~~x ,

where the ith component can be written

~Q (K) = (1 - 

k 1d 1 )x~. (2.5)

and the loss of (2.3) becomes
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L(~Q(K)~ e~~
2) = 

~ (6Q(K)-’)’(~ Q(K)-O). (2.6)

I t then follows tha t ~Q(K) is minimax against loss (2.3) if and only if

.
Q(K) is minimax against the loss (2.6).

In the following we will ;urpress the dependence of the estimator

on Q, and since K will be a function of X and s, the variance estimate ,

we wi ll denote the ri dge estima tors by

Finall y, we note tha t since X is minim ax with constant risk

R(X ,~~ ,2) = E L(X ,e ,~
2) = trD ,

where “tr” denotes the trace operator , an estimator 6(X,s) is minimax

if and only if

t,(~~e.o2) = R (X ,-.- , u 2) - R (r,,O ,~
2) 0, ~~~~.
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3. Tail Minimax Conditions

The form of Hoerl and Kennard ’s ridge estimator , while intuitively

pleasing, leads to a rather complicated risk function. If one t r ies to

apply Stein ’ s integration by parts technique (Efron and Morris (1976) )

in which an unbias ed estimate of the risk is obtained and bounded above

for all X , it seems that one is lead to either bounds that are not sharp

(Thisted (1976)) or additional conditior ,s on the estima cor (Strawderman

(1976)). The proof in this paperavoids these complications by obtaining

an upper bound on the risk of oR (x, s) by an indirect method.

We begin with the concept of tail minimaxity introduced by Berger

(l976a ) to deal with l~-Isses other than quadratic. We use tail

minimaxity here to obta i r, a simplified expression for the risk of

Defin ition 3.1: An estimator 6(X,s) is tail minima x if M > 0 such that

~ ‘ satisfying e ’ O M , L~ 6(X ,s),~ ,o2) 0.

Since 6R (X ,s) shr inks X toward zero , (as can be seen from (2.5)),

it should perform well against quadratic loss for small values of ~~~. Thus ,

~:e beg in our investigation for minimax ridge estimators by examining con-

ditions under which the risk of the ridge estimators dominates that of

X for lar ge values of ~~, i.e., those that are tail minimax. We first

develop conditions under which , for large values of ~, the quantity

Ef(X) can be approximated by f() with error small enough to be ignored.

We then use this approximation on the risk function of ~
R (X,s) to

derive conditions for tail mini niaxity .

From the work of Brown ( 1971) and Berger ( l976a) ,  it is reasonable

to choose k~ so that the quantity
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y (X ,s) X — ~(X ,s), (3.1)

is, for lar ge values of X ’X , approximately c/X’X for some constant

c , i.e.,

y (X ,s) “-i c/X’X . (3.2)

To this end , we cons id er k 1 of the form

a .sr(X ’D~~X/s),k. = 
1 

1 (3.3)

where a~ is a positive constant and r(.) is a bounded function satisfying

certain regularity cond i tions . While the quadratic form i n the

denominator may contain any posi tive definite matrix and still

satisfy (3.2), it wi l l be important later in this paper for the quadratic

form to follow a non-centra l chi-square distribution.

For k1 as i n (3.3), the ridge estimator of (2.9) can be written

compc’r~en twise as

a.d .r(X’D~~X/s)
~~(X,s) = (1 - 

1 i—
~ 

X .,l < i < p .  (3.4)1 a~d 1 r(X ’D X/s)+X’D XIs 1 —

We start wi th the following l ermia , wh ich gives conditions on a function

f(x) under which , for large values of o , Ef(X) can be approximated

by f(e) wi th small error.

- - .~~~— .--- —-..
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Lermia 3.1: Let X ~ N(~ , I), and let the function f: J~~ P sat i sf y

- i )  f has all second order partial deriva tives

ii) E (f(X) - f(o))2 ~~11, 1~~ for some constants q and K

i ii) sup f~~(y) - f13 (e )~ = o( 1 o 1 2) 1 i , i p
y> I~ II2 

2 
—

where fii (X ) = - .X
~~X 

f (X)
‘I 

~

Then

Ef(X) - f(o)J= o( 1 e 1 2).

Proof: Define the regions W and Wc by

W = CX: X -e I< 1H12
= C X : I X — O l > Io~I2}

The Taylor expansion of f about e (up to second order terms) is

f(X) = f ( e )  + + p (X ,~~) 
(3.5)

where

f1 ( e )  = -
~~~~~

— f ( X ) , (3.6)
i X=e

p ( X , o) = 
f lt ) 2 

~~~~~ (X~~o
1~~

(f 13
(~ +t(X -o ))-f 13 ( u ))

1 ,J

for some t, 0 < t < 1. Letting i(S) denote the cumulative norma l

distribution with mean 0 and covariance matrix I we have
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Ef(X) = f { f ( o )  + ~ (X
~
-e.)f1 (e) + 0 (X ,n) }  d~(X-o)W i= 1 1

+ f f ( X )d 4u (X -o )
Wc

From the definition of W , a sim ple sign invarian ce argument will show

f (X
~
_A.)

~
(X
~e) 0, i =

W

therefore ,

Ef(X) = f(e) + f p ( X ,O ) d i ( X - ø )
w

(3.7)
+ f (f(X) -

WC

and hence ,

I E f ( X )  — 

~
(o)I 

~~. 
Ip (X ,e )Id~(X-o)

(3.8)

+ I If (X )  — f(G )ldu~(X-e)
WC

Noting that X eW I~ 
+ t (X-o f l  ~ I e P / 2  for 0 t 1 , we have

sup f 13 ( o + t ( X — e ) )  - f13 (o)j < sup }f 13 (y) -
X€W 1y j> lo~I2

It then f ol l ows from (3 .6)  and co ndition ( i i i )  tha t
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(1 t)2p (X ,tm ) ~ du~u (X ~~ ) < f  ~ C ~ X —o l i x  — u >

W i,j 1 i j  j

x sup f13 (y)-f 13 (o)I} d~(X -e )
y~ >i o l/ 2

(3.9)

1max sup f 13 (y ) — f 13 (e) ~ ~ J X ~— e~ i J X 3
—

- 6 
~~ b~Hol/2 i ,j

= N max sup f13 (y)—f ’3(ofl
i,j ~y~>~e~/2

= o( 1e 1 2),

where N = (1/6) ~ Ej X 1
_ o
~ I IX~—e3 I <

~~. Also , from the definiti on
i ,j

of W~,

I lf(X) — f ( e )  d’~u ( X — o )  = Ej f ( X )  — f(~) I h I ( j o i / 2 , .) ( I X — I )

WC

~ {E(f(X) -

by Holder ’s inequality . Using the wel l known fact (see, e.g., Chung

(1968)) that if a > 0 then

f p— dz
a

we have

EI ( 1 O 1 / 2~ ,~) ( I X — o I )  = P( !X— eI > o~/2)

p -

~ jX -o > i~~i/2p~-~ )i i  —

1= 1 

—-
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< 2 p  P(n(0 ,l )  > e~/2p~)

4 3/2 2exp{-~o J /8p} ,
l e l

2and combining this with condition (ii) and the fact that lim yne_Y 
=

we have

I f(X) - f ( e ) Id u~’ (X - o )  = o( Io f ’
~)

Wc

and hence the result fol lows .

The extension of Lemma 3.1 to the case X ~ N(a ,E), L a known positive

definite matrix , proceeds in the usual manner (i.e., diagona lizing 
~
),

and is  stated without proof.

Lemma 3.2: Let X ‘u N(o ,~ ), and let  f :  p P -÷ P satisfy conditions

i) — iii) of Lema 3.1. Then

IEf(X) - f(°)I= o (I~I 2).

We now derive the asymptotic expres sion for the risk of the
estimator 6 R (X ,s) , given by (3 .4) ,  and the conditi ons under which it

is tail minimax .

Theorem 3.1: Let X ~ N(o.0 20), 0 = d i a g ( d 1 ,...,d ), and let s ‘u

be independent of X. Let the loss of an estima tor o (X ,s) of 0 be
given by (2.5), and let 6R(X,s) be the ridge estimator given by (3.4)

where r(t): P- [0,”) satisfies

.-- _
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i) t~r ’(t) = o(1)

i i) t3”2r”(t) = o(1)

iii) r(t) is bounded and non-decreasing

iv) r(t)/t is non-increasing .

If  
~ ~l 

> 0 and > 0 such that

r(t) ~
- [2(m+2)~~ (trA D2_2xmaxAD2)/xmaxA 2D3]_E 2, (3.10)

where A = diag(a 1,.. . ~~~ a1 > 0, 1 < i < p ,  then a K -, 0 such that
‘V 0 ’ ~~ > K,

<

Proof: Define

~ (o R ,o ,02) = R(ó R (X ,S) , O ,cy 2 ) - R ( X ,ø,c12 ).

From ( 2.5) and (3.4)  straightforwa rd calculation yields

R 2 p (a.d.r(t)X.)2
A ( 6  ,o ,a ) = (l/~

2) ~ E{ - 
1 1 1

i=l (a
~
d 1 r(t)+t)

(3.11)

2X 1 (X1-o 1 )a1d1 r(t)
- 

a 1 d 1 r(t) + t - I,

Where t = X’D~~X/s. Integrating the last term in (3.11) by parts and

defining
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Wm 
= sb 2 , 7~ = X 1 /n , v = Z ’ D~~Z,

yields

= E { 
(a 1d1 r(v/w~

))2w
~
Z
~ 

- 

2a i d~
r(v /wm )wm

i= l (a
~
d
~

r(v /w ) w
~
+v)2 a

~
d
~ 
r(v/wm )w +v

+ 
4a 1 d~

r(v /w
~
)w
~
Z
~ 

4a i djZ~
(v /wm )r ’(v/w)

(a
~
d
~

r(v /w ) w
~
+v)2 

- 

02w( a. d.r (v/w )w +v)2

Since r is non-decreasing, the last te rm is bounded above by zero . Note

that t = X’D~~X/s = Z’D
~~

Z/w
~
, and app lying Lemma 4 , Appendix to the

funct ion q(t) = t~~h(t) we have

E{x~h(Z’D~~Z,x~)} 
= mE{h(Z’D~~Z,~~~2} (3 .13)

Us ing (3.l3)on each of the first three terms of (3.12), bound i ng the

las t by zero , and rearranging terms gives

R 2 ~ 
ai d i r(v/wm+~~(aidir (v /w +2 )w +2+4)Z~r ( o  (X ,s),e,o ) < m L El— 21= 1 (a1d1 r(v /w~~2)w~~2+v) (3 .14)

2a 1 d~r( v/w m+2 )
- 

(aid i r(v /wm+2 )wm+2+v)~

It follows from conditions (1) and (i i) tha t r(v /w) is non-inc -easing in

w , and wr(v /w) is non-decreasing In w , and hence the function
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a.d.r ( v / w)Z .
q1 (w ) = 

~a~d1wr(v7 Yi~~

is non-increasin g in w. Applying Lemma 5, Appendix shows

E{q 1 (x~~2)(~~~2 - m+2)) 0,

so tha t (3.14) is bounded above by

p a.d.r(v/w) (a.d .r (v/w)(m+2)+4)Z~
6 X ,s ,o ,o < m  ~ E{ 

21=1 (a
~
d
~
r(v/w)w+v)

(3.15)

2a1d~r(v/w)
- 

(a~d 1 r(v/w)w+v~J 
}~

where , from here on , w = w
~+2 ~ x~~2. 

Div ide the region of integration

of w into the two intervals

W0 = {w: w < M } ,

= (w: w >

where M is a positive constant. The exact method of choosing M will

be detailed later in the proof. Let g 1 (w ,Z) denote the quantity in

braces in expression (3.15) and let F ( S )  denote the cumula ti ve 2

dist ”ibution with m+2 degrees of freedom . Then

~(6 R (X s ) 0 0 2 ) ~~m ~ E~ (g 1 (w~Z))dF(w )
0 i- ’l

+ m f E7(g1 (w ,Z))dF(w)
W

i 
1= 1
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Cons id er f i rst the i nte g ral over W 1 . S i nce a 1d 1 r (v/w)w ‘ 0 and

Z~D~~Z

P p a.d. r (v /w )
J -~ E7(g1 (w ,Z ) ) dF(w) f )

~ 
E~ C ( 1 1

v ~~~i= l W 1 1= 1

x(a~d~r(v/w)(m+2)+2d.) }dF(w)
(3.16)

p a.d.r*
f ~ E~{( 

l
v
i )(aid~r*(m+2)+2d 1 )idF (w)i=1

= ~EZ{v~~tr(m+2)r*
2A2D3+2r*AD2)}] P(w > M)

where r* = sup r(t). Since
t

E
~

(v
~~
) = E7

(Z ’ D~~ZY
1 = ~~~~~~ + o(G 2/o~ o)

the last expression in (3.16) is equal to

(o 2/e ’D~~e)(tr[(m+2)r*
2A2D3 + 2r*AD?])P(w > M) + o (o

2/e~ e ) .  (3 .17)

Consider next the integral over W 0. It is straightforward to verify that ,

for fixed w, g1 (w,Z) satisfies the conditions of Lemma 3.1. Thus

f 
.~~~ E 7g 1 (w ,Z ) d F ( w )  = I g

~
(w ,e/n)dF(w)

i= l

+ f o(u2/e ’e)dF(w)
WO
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— 
P a jd~r(v/w) (aid.r(v/w)(m÷2 )+4),

2

i=l 
~ (a~

d
~
r(v/w)w + v)

(3.18)
2a.d~r(v/w)

- — — --- }dF(w)
(a 1 d~

r(v/w)w+..)

+ f o(o2/u ’ u)dF(w),
WO

where v = ~‘0
1 0/a2. Stra ightforward calculation wil l show that the

individ ua l terms comprising the o(o2/o~o) term in (3.18), which are

the higher order derivativ es of g~ (w ,Z), can each be bounded by a

function which is independent of w and of order o(~
2,/o b o). Now

writing

(a
~
d
~
r(v/w)w+

~4~~ 
= ~~l (l- (a 1 d~r(v/w)w/ (a.d.r(~/w)w+W

= v~~(l~~ 1 (u ,w)),

and

s
~
(v ,w) =

we can wri te (3.18) as

J ~~ E
~
g1 (w,Z)dF(w) = j~ 

rLv/w) 
~ (l-y 1 (v,w)) [(l-y. (v ,w))s.(~ ,w),~1=1 W0 

V i= 1

- 2a 1 d~]}dF(w)

+ o(o2/e ’ o)
rLv/w) 

~ (S 1 (v ,w)/v-2a 1 d~)}dF(w)
0 i-l



“ I

- I ~~~~~ .~~~ ~~~~~~~~~~~~~~~~~~~~W0 i=l
(3.l~~)

- y~ (v,w)s1 (v,w)/’ jdF(w)

+ o(~2/o~ ‘)

Recall r* = sup r(t). Then for w ~ Wt 0

~~~ ( v ~~w)  < ajd i r*M(ai d~r*M+v)~~ , 1 i < p

< ai d~~
2(a1djr*(m÷2)+4), 1 < I < p

and thus it is clear that the second intey -al in (3.19) is o (v~~) =

Hence , summing the first term in (3.19) yields

f E7g~ (w ,Z)dF(w) < j r L ~) [
r(V/w)(n~~~~’A~

2D2o+r~’AP
W0 i=1 o ’D 0

- 2trAD2]dF(w)

+ 0( 2/o l e)

(3.20)

- f ~ ~~~~ (Ama xA 2D3)(m+2)
V

2(m+2)~~ (trA D
2-2AmaxAD2)

x{r*~ 
~maxA 2D3 I dF(w)

2 ,
+ o(~ / 0  ~),

since

. _ _



-~‘A
2D2o - 2 3 o ’ADe 2

~ A D , ~~~~
- A A D .

o ’D ’o — max o ’D ’ o 
— max

By assumption , the quantity in square brackets in (3.20) is bounded

above by -

~~ 2’ 
r(v/w) 

— 1 and since \max Pt2D3 > 0,

p 2
J E7g1 (w ,Z) d F(w) < -

~~~~~

---

~

- 
~~~~~‘ i~ 2~max

A203(m+ 2)
~~~ .~ M)] (3.21)0 o D  0

+

Combining (3.17) and (3.21) yields

(. R 02) < { -  . 1 E2Ama A D 3(m+ 2)P(w M)

+ (tr[(m#2)r*2A2D3+2r*AD?] )P(w - - M)} (~ .22)

+ o(~
2/o ’ o).

Now M is chosen large enough so that

~~~~~~~~~~~~~~~~ 
- M)

+ trL (m+2)r*2A2D3+2r*AD2]P(w > Ni ) 

~~ 
< 0,

for some > 0, and thus from (3.22),

A ( 6 R ,O , 0 2 ) - ,
3m0 2/o’ D L  + o ( , 2/e 1

~~)

- L 3mA . Do /r~o + o(~
2/ ’ e),

and for suff iciently large e ’ o , A (6R ,o ,o2) 0 and so sR (x ,s) is tail

min imax. H
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While Theorem 3.1 does not guarantee that the risk of ~~~~~ will

l ie be l ow that of X for any specified values of , it does provide a

bound on the tail behavior of the risk function of SR (X ,s) . In the
nex t section we show tha t this bound is , in fact, a global bound.



4. Sufficient Conditions for Mini rTi axity

The main theorem of this section , Theorem 4.1 , extends the tail

m in imn a x bound of Theorem 3.1 to a globa l bound. We introduce a new

niethod of proof , which differs sharpl y from the techniques previously

used to prove mini mna xity . Rather than bounding the ri sk function

pointwise by a function which lies below R(X ,’ ,~;
2), we identif y the

eAtremna of ~~~~~~ ~
2) and show that at these points the risk

function of ~~(X ,s) is be l ow that of X.

Theorem 4 .1 :  Let ~~(X ,s) be the ridge estima tor of (3.4) where

r ( t ) :  P .. [Q ,~~~) satisfies conditions i) - iv) of Theorem 3.1. If

0 - r(t) 2(m+2Y ’[trAD2- 2
~max

AD 2]/ niax A
2D3

~ 
(4.1)

0, then ~
R (x s) is minimna x against the loss (2.5).

Proof :  Assume that the bound in (4.1) is strict , i.e., i L - ~ and

both positive , such that ‘V t > 0

‘ 1 r(t) (2(m+2)
~~

[trAD?_ 2A
max AD2]/.A max A

?D3) - ~2.(4.2)

Then from Theorem 3.1 ~i M > 0 suc h that ~ ~~‘ q > M A( .o, -) 0.

Cons id er the se t ~, 
= {~ : o ’~ Ml , a compac t sphere in p P• We w ill

bound ~(l~R~ 1~ .2) by a continuous function ~(,~R 0~~2) wh ich must have

a maximum on ~
,. We w i ll then show tha t, with the exception of the

point -‘ = 0, ~(6 R (x) e) does not have an extreme point in the

interior of ~ and thus achieves its maximum either at = 0 or 0’ ’ = M.
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If ‘ ‘~~‘ = M , it will follow from Theorem 3.1 that ~,(6
R
~~~G

2) < 0.

We then show that ~(6R ,Q,02) < 0. A simple argument , usin g Fatou ’s

Lemma , then allows the result to be extended to the case when the

i nequality in condition (4.1) is not strict.

Us ing the notation of Theorem 3.1 , from (3.15) we have

R 2 R 2
~t ( 6  ,o ,o ) < y ( 5  ,0,o )

p a1d 1 r(v/w)(a.d.r (v/w)(m+2)+4)Z~
= m ~ E{ 2 (4.3)

i=l (a~d1 r(v/w)w-’-v)

2a~d~r( v/w)
- 

(a
~
d
~
r(v/w)w+v

where ‘
~ 
n (e

~
/
~
,d
~
), v = Z ’D 1 Z, w “i ~~~ 

i ndependent of 7. Define

n = 0/a ,

= a
~
d
~
r(v/w)(a

~
d 1 r(v/w)(m+2)+4), (4.4)

- 
h 1 (w ,Z) = (a 1d~

r(v/w)w+v)
~~

,

then

~(6R ,,0 2) = ~ 
~ 

E{g
~

(w ,Z)h
~

(w ,Z)Z
~1- 

(4.5)

- 2a.d~r(v /w) h 1 (w ,Z)}

Letting ~~
( -

~) denote a chi-square random variable with p degrees of

freedom and non-central ity parameter cz/2 , we have from Lemma 2 ,

Appendix,
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= ~ 
i~ l 

E{g~ (w

+ 
~~~~~~~~~~~~~~~~~~~~~ 

(4.6)

- 2a 1 d~r(x~ (v)/w)h~ (w 1x~(v))}.

where v = n ’D L~. We note the following: if f(x) is a function of x

onl y through x2, then with the possible exception of x = 0,

~~~~~ 
f (x)~ = 0 

~~~~ 
f(x)~ = 0.

x=xo x=xo

From (4.6) it can be seen that ~(6R 0 0 2) is a function of r only

through 
~~~~~~ 

Thus , with the possible exception of n = 0, a point

is an extreme point of ~(6R ,~ ,02) only if

= 0, 1 1 p (4.7)
mr 1 . 

f l f l~

We now show that such a point does not exist. From Lemma 6, Appendix ,

_L
~ ~(6R 10 2) 

.
~~~ 

E { g
~

(w ,x~÷4
(v))h

~
(w ,x

~+4
(v))

1—

- g1 (w ,x~~2(v))h~ (w ,x~÷2(u)fl

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(4.8 )

-
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+ (a 1d~
)[r(x

~+2
(v)/w)h

~
(w ,x

~+2
( ) )

- r(x~(v)/w)h 1 (w ,x~ (v))]J

+ ECg k (w ,x
~+4

(V))h
~
(w x~÷4(V))l

Notice that the sum in (4 .8) does not depend on k , the index of

differentiation. Therefore , denoting the sum by~~(w ,n)

_J_ ~~ R~~~02) = E~ (w ,0) + Egk (w ,x
~+4

(v))h
~

(w ,x
~÷4(v)) (4.9)

for all k, 1 < k < p. Thus , in order for (4.7) to be satisfied at some

point ri O ~ 0 , it must be the case that

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

for all i , j ,  1 < i , j < p. From (4.4),

Eg 1 (w ,x~~4(v))h~ (w ,x~+4(v))

= E{ 
a1d~

r(x
~+4

(v)/w)(a1d1 r(x~+4
(v)/w)(m+2)+4)

(a 1 d 1 r(x~~4(v)/w)w + x p+4(’1))

and from Lemma 9, Append i x , this is a strictly increas i ng function of

a 1d~
. Therefore, (4.7) can be satisfied only if a~d1 = c vi., but

if this is the case , from (4.3),
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R 2 cr(v/w) (cr (y/wXm+2)+4)z~
~~~~~~~~ ) m

1=1 (cr(v/w ~l+v)
2

2cd~r( v/w)
- 

cr(v/w)w+v

cr(v/w) (cr(v/w)(m+2)+4)z’z 
- 2trD) (4.10)< m E(~~~~/ )~~~1(

since Z’D 1 Z = v < cr(v/w)w+v. Since Z’Z/Z’D~~Z < ~~~~~ rearranging

terms in (4.10) shows -

2(trD-A D)
___________ maxA ( 6 R 0 0 2 ) < cm(m +2)E c r ( v /w)  ) ( r ( v / w )  - 

c (m+2)A ~~~
I. (4.11)

max

Under the res tric ti ons a
~
d1 =c , (4.2) can be wr itten

‘ 1 r (t) < 2 (trD_2A max D)/(c(m+2)A max D) -

an d hence the right hand side of (4.11) is negative . If n = 0, or

equivalently e = 0, i t i s obv i ous tha t

~(ó
R Oc j 2) 0,

since ~~(X ,s) is always closer to zero than X. Thus , if (4.1) is

replaced by (4.2), ~
R(X s) is a minimax estima tor of 0. If we define

r (t) = (l—i)r(t) + C L .  (4 .12)

where 0 < 1 and c > 0 sat isf ies
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0 c < 2(m+2)
~~ (trA D2_2xmax AD2)/Amax A

2D3,

then the ridge estimator ,s R (X ,s) given componentwi se by

R a.d .r (X’D~~X/s)
6 1 (X ,s) = ( 1 — 

1 ii 
~ 

)X . ,
a1 d1 r (X’D X/s)+X’D X/s 1

satisfies the theorem with (4.1) replaced by (4.2), and hence is

minimax ‘Va , 0 L<1 . It is clear that l i m  6R (X ,s) = 6R(x s) and thus

from Fatou ’ s Lema

R(X ,e,02)

u r n  inf R (ic R (X ,S)O ,a2)

> E{ lim inf L (oR (X ,s),~4 ,~
2)— 

4 . 0

= E L(6R (X ,S)e ,02)

=

and hence 6 R (X ,s) is minimax j I
Condition (4.1) is essentially the same condition derived by other

au thors working with certain Stein-type estimators . For example ,

Bock (1975) showed that the spherically symmetric Stein-type estimator

o8(X,s) = (1 - 
ar (X’D 1 X/s) )X

X ’D X/ s

is minimax provided

0 ar(t)  < 2(m+2)1 (trD_2 Amax D)/A max o,
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wh ich is exactly the condition of Theorem 4.1 if we ch oose a
~

d 1=c

to make R
( x )  spheri ill y  symm etr ic. If D I , A = a l . then (4 .1)

reduces to the familiar

0 < a r ( t )  2(p-2) (m +? )~~ .

Theorem 4 .1 has an i nrinediate extension to a wider class of functions.

We state this in the fo l lowing co rollary.

Co ro~~~~~ 4 .1 :  Let ~
R (X ,s) be given componentwis e by

R a.d.r ( X ’ D 1X ,s)
. ( X ,s)  = ( 1  - 

1 1 
1 ) X . ,  (4 .13)

a
~
d
~
r(X ’D X ,s) -s- X ’ D X /s ~

where r: • [0, ) satisfies

I )  ~~~
-- r(t 1, t2 ) = o ( t ~~-)

i i )  
~~~~~~~ r(t 1,t 2 ) =

‘t l

i i i )  r ( t 1,t 2 ) is non-decreasing in t1 and non-increasing in t2
iv ) r(t 1,t 2 )/t 1 is non - in creasing in t 1

V ) r(t 1,t 2 ) t 2 is non -decreasing in t2 .

If

0 r(t 1, t2 ) 2(m +2)
~~

(trA D 2_ 2A
max AD 2 ) / A max A 2D3 , (4 .14)

for all t1, t2 
> 0, then S R (X ,s )  is minimax against the loss (2.5).
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The class of functions of Coro llary 4.1 includes the ridge estimator

~
5 (X s) g iven componentwise by

ad: 1
= (1 — 1 )X . (4 .15)

ad~ +X’D X/s+g+h/s 1

where a , g and h are positive constants. Strawderman (1976) showed

6S (X S) is minimax if

i) h > 0

i i ) g > 2(p-2)(m+2~~
1

iii) a - (m m d~ )2(p-2)(m +2 ) 1 .

If we define
—l

r(X’Ui X ,s) = ______________

X ’D~ X/s+g+h/s

-2a
~ 

= ad
~

we can write (4.15) in the form given by (4.13). It is easy to check

that the function r in (4.16) satisfies the conditi ons of Corollary

4.1 , and that the mininiax bound (4.14 ) can be wr i tten

a < (mm d~)2(p_2)(m+2)~~,

and that the restriction g > 2(m+2)~~(p-2) is not necessary .

-~~~~~~~~ --
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5. Necessary and Sufficient Conditions

In this section we treat the case of known variance (i.e.,

X ‘-. N(~ , D)), an d show that condition (4.1) is , in fact , necessar y

and sufficient for minimaxity of the ridge estimator. The main

theorem of th i s sect ion is the follow i ng.

Theorem 5.1: Let X ‘u N (’~, 0), D = diag(d 1,... ,d ) , and let the

ridge estimator 6R(X) be given componentwise by

a.d.r(X’D ’X )
6~(X) = (1 1 1 

1 -l )X., 1 1 < p, (5.1)
1 a

~
d 1 r (X’D X )+X’D x 1

where a~ are positive constants and r: P -* [0,r=) satisfies

1) tr ’(t) = o(l),

ii) t3”2 r” ( t )  = o (l),

i i i )  r(t) is bounded and non-decreasing ,

iv) r(t)/t is non-increasing .

~
R(X) is minima x against the loss

L(1 R (X) ,o) = (o R(x)_oy(6 R (x)_e) (5.2)

if and only if

0 - r(t) 2(trAD2_ 2A max AD2)/.max A
2D3, (5.3)

for all t > 0, where A = diag(a 1,... ~~~~

-



-“3

Rema rk: Condition (i) is a slightly stronger requirement on the first

derivative of r than was previously need , and i s only needed for th~

necess i ty of the theorem . The su fficiency of the theorem hol ds if

t~ r ’(t) = o(l). It should be noted , however , that the s trengthening

of this con diti on mere ly eliminates the more patholo g ical func ti ons from

the possible choices of r.

Proof :  The sufficiency will follow from Theorem 4.1. Define 6R (x ,s )

componentwise by

R a.d.(m+2Y~ r(X’D~~X/s)
= (1 — 

1 1 
u u u )X., 1 < j p

1 a
~
d
~
(m+ 2) r(X’D X/s)+X’D X/s 1

where r satisfies conditions i) - iv ) and s 
~ 

independent of X.

From Theorem 4.1 , 6~ (X ,s) i s m inimax if

0 - r(t) 2(trAD 2 
- 2A max AD2)/A max A

2D3
~ 

Vt > 0.

Since u r n  s(m+2)~~ = 1 a.e., it follows that lirn 6R (X ,s ) = 6R (x)
fl~~~o fl}+co

Also , from Lebesgue ’s Dominated Convergence Theorem it is easy to

check that

u r n  R(o R (X ,s),e) = R(6~(X),o),

and hence the suff icienc y is p rove d.

For the necess i ty , we first define A (6R ,u) R(X ,~ ) -

an d from (5.1) and (5.2) we have



_  -

R (a.d.r (t)X.)2 2X.(X .-u .)a. d.r(t)
- (
~ , 4 1 )  = ) E - 

1 1 1  1 1 I ,
i=l  (a~d 1 r ( t ) + t )  a .d . r ( t ) +t

where t = X’0 1 X. As in Theorem 3.1 , we i nteg rate the last  tern i by

parts and rearrange terms to get

R a
~
d
~
r(t)(a1 d~

r(t)+4)X
~ 

2a
~
d
~
r (t)

- ( 6  ,
~

) = E~ 
~~~~~~~~~~~~~~~ 

-— -

4a.d .X~tr ’ (t )
1 1 1

(a
~

d
~

r ( t )+ t ) 2 -

NJow we appl y Lemma 3.1 , and noting tha t condition (i) insures that

the term involving r’(t) is o( 1o j 2), we have for sufficientl y large

R - ~~~~~~~~~~~~~~~~~ 
2a~d~r(r)

.(o ,4 1)  - 

i~ l 
— 

(a~d~r(i )+~)
2 

-

+ o( 1 0 1
2),

where -r = ‘D~~o. Now applying an argument similar to that used in

Theorem 3.1 in going from (3.18) to (3.20), we have for suffi cien tly

large . ,

= { ~~~~~~~~~~~~~~~ - 2t rAD2~ * o( 1 o 1 2). (5.4)
T 

~~~~ (4

Define a sequence of vectors as follows . Note that the matrices

A 2 D3 and AD2 have commo n eigenvectors , and let ~ be the norme d

eigenvector of A2D3 corresponding to its largest root. ~ i s then also
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the normed ei genvec tor of AD2 corresponding to its largest root. Define

‘ - ~~~ byn

= ~~~~~~~~~~~~~~~~~~~n

Then , *lD l
J * = n and

,~*1A
2
D
2
~ *

— 
n n - x *’D__A

2D2D~- *
- ____

cz X

n n

= j * IA 2D3 L *

= A A2D3.max

SiT il arl y, ., * ‘ADo*/e*D~~~* = A AD2. Thus (5.4) becomes , forn n n n max
•4 = - - *

n ’

= {r(n)A A2D3+4A AD2-2trAD 2}n ’ n max

+ o ( I~~~
2 )

= A A2D3{r(ri)-2( trAD 2-~ AD2) ‘~~ A 2D3 }n max max - max

+ o(n~~).

Now suppose (5.3) is violated , i.e., I - 0 and , 0 such tha t

V t I,
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r (t) > (2(trAD 2-2k AD2)/.~ A 2D3)- 0. (5.5)

It then follows that for sufficiently large n

!I(~~ A max A
2D3 + o(n~~) (5.6)

and since (5.5) bounds r(t) from below , for sufficiently large n (5.6)

is positive and 6R (x) is not minimax. There fore , the contrapositive

an d hence the theorem is proved. I

The proof of necessity in Theorem 5.1 did not require conditions (iii )

on r(.). We state this in the following corollary.

Co rol lary_5.1: Let ~
R(x) be the ridge estimator of (5.1) where

~ [o,~) is bounded and satisfies

i) tr ’(t) = o(1)

ii) t312r”(t) o(1).

If ~
R(x) is minimax against the loss (5.2), then

u r n  in f r(t) - 2 (trAD2_ A
max AD2)/A maxA

2D3.

Ihisted (1976) derived necessary conditions similar to the

above for the case r(t) = constant.
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6. M inimaxity and Conditioning

The crucial condi tion for the minimaxity of ~~(X) is that

0 r(t) 2(trAD2_2A max AD2)/A maxA
2D3, (6.1)

and hence , it mus t necessar i ly be the case that

trAD2 
> 2~~~~AD2. (6.2)

We wish to point out the following inconsistency between the orig inal goa l

of ridge regression estimators and the performance of minimax ridge

regre ssion es ti ma tors . Hoerl and Kennar d saw rid ge regress i on as a

solution to the “ill -conditioning ” problem that was mentioned earlier ,

which means , in particular , that the a 1
1 s shoul d be chosen so that

a1 a
3 

when d
~ 

> ~~ 1 < 1 , j  p (6.3)

which will l ower the condition number of the matrix inverted in the

regression situation , and lead to what Hoer] and Kennard refer to as

a more “stable ” estimator.

Choosing the as
’s to satisf y (6.3) is also intuitively appealing

for two reasons . One , it is Bayesian in nature , and two , it is sensible

to add onl y small amounts of bias to directions with good information

(small d i ’ s). An inconsistency arises , however , when tne condition

of m i n i m a x i t y  is forced into the estimator. If the d 1
1 s are ve ry sp rea d

out (a’) will occur in an il l-condit ioned problem) , the matrix D is

likel y to satisf y

trD2 • 2A rna D2• (6.4)
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As the number of dimensions , p . i nc reases , it is more likely that the

inequality in (6.4) will reverse , but in general one would expect (6 .4 )

to be the case. If the ridge estimator is to be min imax , (6.2) must

hold so the a~.’ s mus t be chosen to “reverse ” the inequality in (6.4),

and this cannot be done if the a 1
1 s satisfy (6.3).

The result is an incompatibility between minimaxity and the

conditioning problem . Most minima x estimators will have the constants

a 1 satisfying

a
~ ~~ 

when d
~ 

< d ., 1 - i , j < p .  (6.5)

(see , e.g., Strawderman (1976)). Choosing the ai ’s to satisfy (6.5),

however , is not only intuitively unappealing but , i n many cases , w i ll

aggravate the conditioning problem . The solution seems to lie in a

compromise between the two criteria , possibly resulting in an estimator

with bounded risk which will improve the conditioning problem. This

i dea is developed more fully in Casella (1977)
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APPEiNI) I X: COMM h A T  I ONAL LEMMAS

Lct X } av e  a p- v a r i a t e  no~~ a 1 di stribution with mean 0 and

cova r iance  matr ix D. let x (j) den ote a chi— square random variable

w i th p degrees of freedom and n o n - c e n t r a l i t y  par ailmet er j / 2 .

Lemma 0. I f  K ~~ Poiss n( t/ ~~~~ ) and K 
2 - , then ‘-- ~~~~~~~~ -

In part i cnlar , if Ii h (x k)) exists ,

= L K E 2 L h + 2K ) I K L

Proof: This is a relatively well-known result , stated here simp l y

for comp leteness (See, e.g. James and Stein (l9~ l ) ) .

The next five lemmas arc from Bock (1975), and are~~ tati- d

without proof.

Lemma_ 1: Let h: [O ,~ ) ~~~~~~ Then

E{h(X ’[)1X)X) = 0 E{h(x
2

2
(0 ’D~~0) ) } .

Lemma_ 2: I f  U = d ia gon a l (d 1 ,. . . ,d), and h: [0,=~) 
-* (-

~
= ,~~) ,  then

- 

E{h(X ’ D 1
X)X~ } = d.

+ e~~
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Lemma s: Let W be symmetric positive definite, and let

h: [0 ,=’) (- c” , ~) .  Th en

E{h(X’l) 1 X)X ’WX } = tr W DL{ h(~
2
~ 2 (0 ’ D ’O) ) }

+

Lemm a 4: Let h: [O ,~~) ( - ‘ , =
~
) .  Then , if the expected values on

both sides exist ,

2
-) p ~~~~~~

= L(— 2 
l_~ .}

Xp~2

Lemma 5: Let S: E 0 ,~~) 
-

~ [0,’”) and t :  [0 ,~~) 1O ,~~
) be mono tone

non-decreasing and non-increasing functions , respectively. Let )~

be a non-negative randoni variable. Assume E(W), ~(S(i~j),

L(WS(W)), E(t(W)) and E (Wt (I~)) exist and are finite. Then

E{S(W) (F (W)—W) ) < 0 E~t(W)(E(W)—W)}.

Lemma 6: Let h: [0,~ ) ~ (-
~~ , =‘) . If  F {h( X

2(OtO))} exi~~,ts , then

= ~~
- [E(h(~

2 
2
(01 0))) - E (h(x

2
(0’O ) )J J

for 1 < i p.

Proof:

- o’e ~~~~~ -

E{h(~
2(0’O))) = 

~ 
~~ 

h(y)(~~~)
k 
~~~~~~ c 2~Ly 

2 e~-~
’ dy
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- t where C
~~~k 

= ( r ( ~-~--~ -)2 2 
)

1~ Interchanging the order of sununaticn

and integration yields

‘O’O

E{h(~
2(0’ 0 0  k -e~ Eh (~

2 )- 0 ) ) )  = ~ ~~~ p +2k
k=O

- ~0’e k (log O~ O)e
k log 2 2

= e e k! 
Eih(xp2k

).
k=O

From Lehmann (1959), Theorem 9.~ page 52 , we can differentiate the

above expression , ~‘ith respect to log 0’O , inside the summat i ln .

ihus,

3

3 iogT~ 
E {h ( X~ ((3’0))}

-k log 2
d - ~0’0 k log O t O

) e= 

k~O ~~~
og ~r~

- (e e - 
1()

~p *2k
)

k lol’ 2
.0’O k log 0,0 1 ~ O ’ O  e

= ~ (e e (k-
k=0 2 ~~~~~

Eh (x
2 
‘k~p+

Since

3 O’G = 0,0
3 log 0,0

rearranging terms y i e l d s

- i_ o le
e 0 ’ O  k-I 2a 
_______

Lh
(~ 2k~3 log o’i L~h(x~ (0’0))}I- ~~~~~ 

k~ 1 (k - i ) !  p+

- i _ o l e
0’O r C 0 ’ O k 2

- 
2 L k1 ~

-2
~ 

Iih( x + ,k ) .
k=O
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= 
~~~~~~~ I~~ 

~ ~~ (~~~~~~)
3 Eh(~~

2
2 2 . )

- :,
- 

- 

k=0 k! 
( 0 0 ) k E h ( x ~~ 2k

) ]

0’O 2
= —

~~
--- [Eh (x~~2

(o’ O)) - hih (~
’(O’C-))J. 

-

From the chain rule ,

- 2 , .

3 3 lo o ’ e  ~ Lh( ~ (0 0 ) )  - -

——
~~ E{h(x~ ( O ’0) ) }  = 

log 0’O

and since

3 log O ’ O  1
= ~~-~-~~- , I < 1 < p,

the result is proved . I

Lemma 8: Let D = diagona l (d 1 , .  . . ,d). If E{h(x~ ( O ’D 1 0))) ex i s t s ,

then

~~ 

E {h(~
2 ( O ’D ’O))) = -

~~
-

~
--- [E(h(~~ 7 (O ’ D ’ O ) )}  -

E{h(~
2(0’D ’0))1]

for 1 < i < p.

Proof: Similar to that of Lemma 7.H
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Lema 9: Let p > 3 and r: P -~~ [0,oo) satisfy

1) r(t) is non-decreasing

ii) r(t)/t is non— i ncreasing.

Le t v = x p+4(t4 O )/x rn~ where X~~+4
(o ’e )  and x~ 

are i ndependent. The
function

f ( a )  = [ ar(v)(ar(v)m+4)

(ar(v)
~m

+
~p+4

(
~
’))2

~~is stricly increasin g in a if either 0 ar(t) - 2(p-2)/m ,

~ t > 4~

Proof: By an argumen t similar to that iii Lerna 7 we can differentiate

inside the expectation , and after some algebra we obLa 1 n

--p- f ” a~ = E 2r~ j(ar (v)~+4) , 2 , ,~~~ 2ar(y)~~~/ ~ 
~ar t v~ 

2+ 2 ~ ~~ ‘ - ‘p+4~ 
/ amr (vJ + 2 ‘ -

~~
‘. ‘~ ‘‘m X p+4~~~ ‘~~~

Adding ÷ 2amr(v)(amr(v)+2)~ inside the parentheses yields

~ f( ) - N 2r(v)(ar(v)m+4) 2 , ~ 2amr (v) 
~

a - 

(a r (v ) x
~
1x

2
÷4 (o b o ) ) 3 ‘p+4 “ ‘ 

- amr(v)+2

+ E { 4ar 2 ( v )  (m-~~) } .
(ar(v )

~m
+xp÷r(e

b e ) )  m

From condition Ii , the definition of v , and Lenina 5 it follows that tie

second expectation above is non-negative. Now from Lema 1 , the first

expectation is equal to
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EKE { 
2r(w)(ar(w)m+4) 2 2amr (w))

(ar(w)-x~+ 
2 )3 

(x p+r+2K amr(w)+2 I~~
, (1)

Xp+4+2K

where K ~ Poisson(o ’ e/2) and w = Xp+4+2K/X rn Now apply ing Lenina 4 three

times shows that (1) is equal to

s(K)r(u) (ar(u)m+4)
EE{ 2 3
K (ar(u 2 2 3 (x P_ 2+2K) (2)) X X p_ ~~~~

)

- 
2amr (u) ‘~K I,p-2+2K amr(u)+2

1 2 2where s(K) = 2(p+2+2K~~
1 (p+2K~~

1(p-2+2K) > 0, and u = Xp 2+2K/X m~
Define

3
2 2 s(K)r(u)(ar(u)m+4)(x2 2+2K)

2 2  3= 

(ar(u)x m+xp 2÷2K )

- - - 
- , - - - 

which is non-decreasing in Xp_2+2K from the conditi ons on r. Adding

+(p-2÷2K-)- - inside the parentheses shows that (2) is equal to

EKE ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - 

- _

- -~-3J_ 
- -_ 

-

+ EKE q (x~~2÷2~ lx~)(p-2+2K - 
2amr(u) 

~ 

- - 

~~~~~~~

- - - -

arnr(u)+2

The first expectation is non-negative from Lemma 5, and if p 4, the

second expectation is strictly posit ive since

p-2+2K > p-2 2 -. 2amr(u)(amr(u)+2Y*
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If p = 3, since 0 < ar(t)  < 2(p-2)/m, the only concern is if ar (t0) 
=

2(p-2) /m = 2/ rn, for som e t 0. But then it follows from condition

(i) that ar(t) = 2/rn , ~ t > t0, and a simple argument will show

that the first expectation in (3) is positive. Hence the derivative of

f(a) is always positive so f(a) is strictly i rlcreasing. II

--
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